TL;DR
是什么:面向在线分析处理(OLAP)的列式数据库。
为什么用:数十亿行数据的极速查询、实时分析、数据压缩。
Quick Start
使用 Docker 安装:
docker run -d --name clickhouse \
-p 8123:8123 -p 9000:9000 \
clickhouse/clickhouse-server
连接:
docker exec -it clickhouse clickhouse-client
创建表并插入数据:
CREATE TABLE events (
event_date Date,
event_time DateTime,
user_id UInt32,
event_type String,
value Float64
) ENGINE = MergeTree()
ORDER BY (event_date, user_id);
INSERT INTO events VALUES
('2024-01-01', '2024-01-01 10:00:00', 1, 'click', 1.5),
('2024-01-01', '2024-01-01 10:05:00', 2, 'view', 0.5);
Cheatsheet
| 命令 | 描述 |
|---|---|
SHOW DATABASES | 列出数据库 |
SHOW TABLES | 列出表 |
DESCRIBE table | 显示表结构 |
SELECT * FROM table | 查询数据 |
INSERT INTO table VALUES (...) | 插入数据 |
DROP TABLE table | 删除表 |
Gotchas
表引擎
-- MergeTree(最常用)
CREATE TABLE logs (
timestamp DateTime,
level String,
message String
) ENGINE = MergeTree()
ORDER BY timestamp;
-- ReplacingMergeTree(去重)
CREATE TABLE users (
id UInt32,
name String,
updated_at DateTime
) ENGINE = ReplacingMergeTree(updated_at)
ORDER BY id;
-- SummingMergeTree(聚合)
CREATE TABLE metrics (
date Date,
name String,
value Int64
) ENGINE = SummingMergeTree()
ORDER BY (date, name);
分析查询
-- 聚合
SELECT
toDate(event_time) as date,
count() as events,
uniq(user_id) as unique_users
FROM events
GROUP BY date
ORDER BY date;
-- 时间序列
SELECT
toStartOfHour(event_time) as hour,
count() as count
FROM events
WHERE event_date = today()
GROUP BY hour;
-- Top N
SELECT user_id, count() as cnt
FROM events
GROUP BY user_id
ORDER BY cnt DESC
LIMIT 10;
数据类型
-- 数值
UInt8, UInt16, UInt32, UInt64
Int8, Int16, Int32, Int64
Float32, Float64
-- 字符串
String, FixedString(N)
-- 日期/时间
Date, DateTime, DateTime64
-- 数组
Array(T)
-- 可空
Nullable(T)
物化视图
CREATE MATERIALIZED VIEW daily_stats
ENGINE = SummingMergeTree()
ORDER BY date
AS SELECT
toDate(event_time) as date,
count() as events
FROM events
GROUP BY date;
Next Steps
- ClickHouse 文档 - 官方文档
- ClickHouse Playground - 在线练习
- ClickHouse 教程 - 教程
- ClickHouse Cloud - 托管服务