ClickHouse

列式 OLAP 数据库 - 数十亿行数据的极速分析、实时聚合查询

TL;DR

是什么:面向在线分析处理(OLAP)的列式数据库。

为什么用:数十亿行数据的极速查询、实时分析、数据压缩。

Quick Start

使用 Docker 安装

docker run -d --name clickhouse \
  -p 8123:8123 -p 9000:9000 \
  clickhouse/clickhouse-server

连接

docker exec -it clickhouse clickhouse-client

创建表并插入数据

CREATE TABLE events (
  event_date Date,
  event_time DateTime,
  user_id UInt32,
  event_type String,
  value Float64
) ENGINE = MergeTree()
ORDER BY (event_date, user_id);

INSERT INTO events VALUES
  ('2024-01-01', '2024-01-01 10:00:00', 1, 'click', 1.5),
  ('2024-01-01', '2024-01-01 10:05:00', 2, 'view', 0.5);

Cheatsheet

命令描述
SHOW DATABASES列出数据库
SHOW TABLES列出表
DESCRIBE table显示表结构
SELECT * FROM table查询数据
INSERT INTO table VALUES (...)插入数据
DROP TABLE table删除表

Gotchas

表引擎

-- MergeTree(最常用)
CREATE TABLE logs (
  timestamp DateTime,
  level String,
  message String
) ENGINE = MergeTree()
ORDER BY timestamp;

-- ReplacingMergeTree(去重)
CREATE TABLE users (
  id UInt32,
  name String,
  updated_at DateTime
) ENGINE = ReplacingMergeTree(updated_at)
ORDER BY id;

-- SummingMergeTree(聚合)
CREATE TABLE metrics (
  date Date,
  name String,
  value Int64
) ENGINE = SummingMergeTree()
ORDER BY (date, name);

分析查询

-- 聚合
SELECT
  toDate(event_time) as date,
  count() as events,
  uniq(user_id) as unique_users
FROM events
GROUP BY date
ORDER BY date;

-- 时间序列
SELECT
  toStartOfHour(event_time) as hour,
  count() as count
FROM events
WHERE event_date = today()
GROUP BY hour;

-- Top N
SELECT user_id, count() as cnt
FROM events
GROUP BY user_id
ORDER BY cnt DESC
LIMIT 10;

数据类型

-- 数值
UInt8, UInt16, UInt32, UInt64
Int8, Int16, Int32, Int64
Float32, Float64

-- 字符串
String, FixedString(N)

-- 日期/时间
Date, DateTime, DateTime64

-- 数组
Array(T)

-- 可空
Nullable(T)

物化视图

CREATE MATERIALIZED VIEW daily_stats
ENGINE = SummingMergeTree()
ORDER BY date
AS SELECT
  toDate(event_time) as date,
  count() as events
FROM events
GROUP BY date;

Next Steps