TL;DR
What: Platform and library for state-of-the-art NLP and ML models.
Why: 100k+ pretrained models, easy fine-tuning, pipeline API, model hub.
Quick Start
Install:
pip install transformers torch
Hello Transformers:
from transformers import pipeline
# Sentiment analysis
classifier = pipeline('sentiment-analysis')
result = classifier('I love using Hugging Face!')
print(result) # [{'label': 'POSITIVE', 'score': 0.9998}]
# Text generation
generator = pipeline('text-generation', model='gpt2')
text = generator('Hello, I am', max_length=30)
print(text)
Cheatsheet
| Pipeline | Description |
|---|---|
sentiment-analysis | Classify sentiment |
text-generation | Generate text |
summarization | Summarize text |
translation | Translate text |
question-answering | Answer questions |
fill-mask | Fill masked tokens |
zero-shot-classification | Classify without training |
Gotchas
Using specific models
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load model and tokenizer
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Tokenize input
inputs = tokenizer("I love this!", return_tensors="pt")
# Get predictions
outputs = model(**inputs)
predictions = outputs.logits.argmax(-1)
Common pipelines
from transformers import pipeline
# Summarization
summarizer = pipeline("summarization")
summary = summarizer(long_text, max_length=100, min_length=30)
# Question answering
qa = pipeline("question-answering")
answer = qa(question="What is Hugging Face?", context="Hugging Face is an AI company...")
# Translation
translator = pipeline("translation_en_to_fr")
translation = translator("Hello, how are you?")
# Named entity recognition
ner = pipeline("ner", grouped_entities=True)
entities = ner("My name is John and I work at Google in Paris")
Fine-tuning
from transformers import Trainer, TrainingArguments
from datasets import load_dataset
# Load dataset
dataset = load_dataset("imdb")
# Define training arguments
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=16,
evaluation_strategy="epoch",
save_strategy="epoch",
)
# Create trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
tokenizer=tokenizer,
)
# Train
trainer.train()
Embeddings
from transformers import AutoTokenizer, AutoModel
import torch
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
def get_embeddings(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
return outputs.last_hidden_state.mean(dim=1)
embedding = get_embeddings("Hello world")
Using the Hub
# Push model to hub
model.push_to_hub("my-awesome-model")
tokenizer.push_to_hub("my-awesome-model")
# Load from hub
from transformers import AutoModel
model = AutoModel.from_pretrained("username/my-awesome-model")
Next Steps
- Hugging Face Documentation - Official docs
- Model Hub - Browse models
- Datasets - Dataset library
- Course - Free NLP course