TL;DR
Was: Plattform und Bibliothek für modernste NLP- und ML-Modelle.
Warum: 100k+ vortrainierte Modelle, einfaches Fine-Tuning, Pipeline-API, Model Hub.
Quick Start
Installation:
pip install transformers torch
Hello Transformers:
from transformers import pipeline
# Sentiment-Analyse
classifier = pipeline('sentiment-analysis')
result = classifier('I love using Hugging Face!')
print(result) # [{'label': 'POSITIVE', 'score': 0.9998}]
# Textgenerierung
generator = pipeline('text-generation', model='gpt2')
text = generator('Hello, I am', max_length=30)
print(text)
Cheatsheet
| Pipeline | Beschreibung |
|---|---|
sentiment-analysis | Sentiment klassifizieren |
text-generation | Text generieren |
summarization | Text zusammenfassen |
translation | Text übersetzen |
question-answering | Fragen beantworten |
fill-mask | Maskierte Token füllen |
zero-shot-classification | Klassifizieren ohne Training |
Gotchas
Using specific models
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Modell und Tokenizer laden
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Eingabe tokenisieren
inputs = tokenizer("I love this!", return_tensors="pt")
# Vorhersagen erhalten
outputs = model(**inputs)
predictions = outputs.logits.argmax(-1)
Common pipelines
from transformers import pipeline
# Zusammenfassung
summarizer = pipeline("summarization")
summary = summarizer(long_text, max_length=100, min_length=30)
# Frage-Antwort
qa = pipeline("question-answering")
answer = qa(question="What is Hugging Face?", context="Hugging Face is an AI company...")
# Übersetzung
translator = pipeline("translation_en_to_fr")
translation = translator("Hello, how are you?")
# Named Entity Recognition
ner = pipeline("ner", grouped_entities=True)
entities = ner("My name is John and I work at Google in Paris")
Fine-tuning
from transformers import Trainer, TrainingArguments
from datasets import load_dataset
# Dataset laden
dataset = load_dataset("imdb")
# Trainingsargumente definieren
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=16,
evaluation_strategy="epoch",
save_strategy="epoch",
)
# Trainer erstellen
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
tokenizer=tokenizer,
)
# Trainieren
trainer.train()
Embeddings
from transformers import AutoTokenizer, AutoModel
import torch
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
def get_embeddings(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
return outputs.last_hidden_state.mean(dim=1)
embedding = get_embeddings("Hello world")
Using the Hub
# Modell zum Hub pushen
model.push_to_hub("my-awesome-model")
tokenizer.push_to_hub("my-awesome-model")
# Vom Hub laden
from transformers import AutoModel
model = AutoModel.from_pretrained("username/my-awesome-model")
Next Steps
- Hugging Face Dokumentation - Offizielle Docs
- Model Hub - Modelle durchsuchen
- Datasets - Dataset-Bibliothek
- Kurs - Kostenloser NLP-Kurs